PhysicsAndMathsTutor.com
January 2009 MA - S2
1)

$$
X \sim P_{0}(3)
$$

a)

$$
\begin{aligned}
P(x>2) & =1-P(x \leqslant 2) \\
& =1-0.4232 \\
& =0.5768(4 \mathrm{dp})
\end{aligned}
$$

b)

$$
\begin{aligned}
P(x=5,6) & =P(x \leqslant 6)-P(x<5) \\
& =0.9665-0.8153 \\
& =0.1512\left(u d_{p}\right)
\end{aligned}
$$

c)

$$
\begin{aligned}
\mu & =\frac{\sum x}{f} & \operatorname{Vor}(x) & =\frac{\sum x^{2}}{f}-\mu^{2} \\
& =\frac{295}{80} & & =\frac{1386}{86}-\left(\frac{245}{80}\right)^{2} \\
& =3.69(33 f) & & =3.72(33 f)
\end{aligned}
$$

d)

The Poisson distribution's mean and variance are equal $3.69 \approx 3.72$ to (2 sf) therefor Poisson is a good model.

PhysicsAndMathsTutor.com
1)

$$
Y \sim P_{0}(\mu)
$$

e)

$$
\begin{aligned}
P(Y=4) & =e^{-\mu \frac{\mu^{4}}{4!}} \\
& =\frac{0.0250 \times 184.9}{24} \\
& =\theta .192945 f
\end{aligned}
$$

2)

$$
x \sim U[-2,7]
$$

a) $\frac{1}{7--2}=\frac{1}{9}$

$$
f(x)= \begin{cases}\frac{1}{9} & -2 \leq x \leq 7 \\ 0 & \text { othervise }\end{cases}
$$

b)

c

$$
\left.\begin{array}{rlrl}
\int_{-2}^{7} x^{2} f(x) d x & =\int_{-2}^{7} \frac{x^{2}}{4} d x \\
& =\left[\frac{x^{3}}{27}\right]_{-2}^{7} & O R & \operatorname{Var}(x)
\end{array}=\frac{1}{12}(7-2)^{2}\right) \quad \begin{aligned}
E(x) & =\frac{1}{2}(-2+7) \\
& =\frac{5}{2} \\
& =\left[\frac{343}{27}-\frac{-8}{27}\right] \\
& =13
\end{aligned} \begin{array}{rlr}
\operatorname{Var}(x) & =E\left(x^{2}\right)-E(x)^{2} \\
\frac{27}{4} & =E\left(x^{2}\right)-\frac{25}{4} \\
\therefore E\left(x^{2}\right) & =13
\end{array}
$$

d)

$$
\begin{aligned}
P(-0.2<x<0.6) & =\int_{-0.2}^{0.6} f(x) d x \\
& =\left[\frac{1}{9} x\right]_{.0 .2}^{0.6} \\
& =\left[\frac{0.6}{9}-\frac{0.2}{9}\right] \\
& =\frac{4}{45}
\end{aligned}
$$

PhysicsAndMathsTutor.com
3) $\quad X \sim B(2 \theta, 0.3)$
a)

$$
\begin{array}{rl}
P(x \leq 1)=0.0076 & P(x \leqslant 4)=0.452 \theta \\
* P(x \leq 2)=0.0355 & P(x \leq 1 \theta)=0.9829 * \\
v \\
* \text { closest to } 2.5 \% & P(x \geqslant 11)=1-P(x \leq 1 \theta) \\
& =\theta .0171
\end{array}
$$

Critical Region $(x \leqslant 2) \cup(x \geq 11)$
b)

$$
0.0355+0.0171=0.0526
$$

c)

$$
\begin{aligned}
& H_{0}: P: 0.3 \\
& H_{1}: P \neq 0.3 \quad \text { tail test }
\end{aligned}
$$

Accept H_{0}, Reject H_{1}
3 is not in the critical region so there is insufficient evidence reject H_{0}
4)

$$
f(t)= \begin{cases}k t & \theta \leq t \leq 1 \theta \\ 0 & \text { otherwise }\end{cases}
$$

a)

$$
\begin{aligned}
\int_{-\infty}^{\infty} f(t) d t & =1 \\
& =\left[\frac{n}{2} t^{2}\right]_{0}^{1 \theta}+\theta+\theta \\
& =\frac{k}{2}[1 \theta \theta-\theta]
\end{aligned}
$$

$$
1=50 k \quad \therefore k=\frac{1}{50}
$$

b)

$$
\begin{aligned}
P(T>6) & =\int_{6}^{10} f(t) d t \\
& =\frac{1}{100}[100.36] \\
& =\frac{16}{25}
\end{aligned}
$$

c)

$$
\begin{array}{rlrl}
E(T) & =\int_{-\infty}^{\infty} t f(t) d t & E\left(T^{2}\right) & =\int_{-\infty}^{\infty} t^{2} f(c) d t \\
& =\frac{1}{1-0}\left[t^{3}\right]_{\theta}^{1 \theta} & & =\frac{1}{200}\left[t^{4}\right]_{0}^{1 \theta} \\
& =\frac{2 \theta}{3} & & =5 \theta \\
\operatorname{Var}(T) & =5 \theta-\left(\frac{2 \theta}{3}\right)^{2} & \\
& =\frac{5 \theta}{4}
\end{array}
$$

A phone call cannot be negative therefore the function should be 0 where $t<0$ A phone call can however be longer than $10 \mathrm{~min}(f(t)$ assumes no call is ever longer than 10 min) Since $f(t)$ has previously been used, assume true for $0 \leq t \leq 10$ and add a tail to right of $t=10$

PhysicsAndMathsTutor.com
5)

$$
X \sim B(10,0.01)
$$

a)

$$
\begin{aligned}
P(x=1) & =\binom{10}{1} 0.01 \times 0.99^{9} \\
& =0.0914 \quad\left(4 . d_{p}\right)
\end{aligned}
$$

b)

$$
\begin{aligned}
p(x=\theta) & =\binom{10}{0} \theta .01^{0} \times 0.49^{10} \\
& =0.90444 d p
\end{aligned}
$$

$$
\begin{aligned}
P(x \geq 2) & =1-P(x=1)-P(x=\theta) \\
& =1-\theta . \theta 914-\theta .4 \theta 44 \\
& =0.0 \theta 43 \quad\left(4 d_{p}\right)
\end{aligned}
$$

c)

$$
Y \sim B(2 c \theta, \theta, \theta 1)
$$

Small p, large n : therefore use Poisson approximation

$$
\begin{aligned}
& 25 \theta \times 0.01=2.5 \\
& Z \sim P_{0}(2.5)
\end{aligned}
$$

$$
\begin{aligned}
P(1 \leq z \leq 4) & =P(z \leq 4)-P(z=\theta) \\
& =\theta .8912-\theta .0821 \\
& =0.8091(4 d p)
\end{aligned}
$$

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com
7)
a)

$$
\begin{aligned}
& f(x)= \begin{cases}-\frac{2}{4} x+\frac{8}{9} & 1 \leqslant x \leqslant 4 \\
\theta & \text { otlorwise }\end{cases} \\
& F(x)=\int f(x) d x \\
&=-\frac{2}{9} \frac{x^{2}}{2}+\frac{8}{9} x+c \\
&=-\frac{1}{9} x^{2}+\frac{8}{9} x+c \\
& F(4)=1,-\frac{16}{4}+\frac{32}{9}+c=1 \\
& c=-\frac{7}{9} \\
&-\frac{1}{9} x^{2}+\frac{8}{9} x-\frac{7}{9}
\end{aligned}
$$

b)

$$
F(x)= \begin{cases}0 & x<1 \\ -\frac{1}{4} x^{2}+\frac{8}{9} x-\frac{7}{9} & 1 \leq x \leq 4 \\ 1 & 4<x\end{cases}
$$

PhysicsAndMathsTutor.com

$$
\begin{aligned}
& \text { 7) } \quad U Q: F(x)=0.75 \\
& \text { c) } \\
& -\frac{1}{4} x^{2}+\frac{8}{4} x-\frac{7}{4}-\frac{3}{4}=0 \\
& \frac{-\frac{8}{4} \pm \sqrt{\frac{64}{81}-\frac{55}{81}}}{-\frac{2}{4}}=\frac{-8 \pm 3}{-2} \\
& x=2.5,5.5 \\
& x \leqslant 4 \quad \therefore \quad x=2.5 \\
& L Q: F(x)=0.25 \\
& -\frac{1}{4} x^{2}+\frac{8}{4} x-\frac{7}{4}-\frac{1}{4}=0 \\
& \frac{-\frac{8}{4} \pm \sqrt{\frac{64}{81}-\frac{37}{81}}}{-\frac{2}{4}}=\frac{-8 \pm 3 \sqrt{3}}{-2} \\
& =1.4 \theta, 6.60 \\
& x \leqslant 4 \quad \therefore \quad x=1.40 \text { (nsf) }
\end{aligned}
$$

d)

$$
\begin{aligned}
E(x) & =\int_{1}^{4} x f(x) d x \\
& =\frac{1}{4}\left[\frac{2 x^{3}}{3}+4 x^{2}\right]_{1}^{4} \\
& =\frac{64}{27}-\frac{10}{27} \\
& =2
\end{aligned}
$$

Mode is 1 (highest point on negative linear graph is lowest constraint)
Median is 1.88
Mean is $\mathrm{E}(\mathrm{x})$ is 2
$2>1.88>1$
Mean > Median > Mode therefore positive skew

